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It is shown that there is an abstract subgrid model that is in all senses ideal. An
LES using the ideal subgrid model will exactly reproduce all single-time, multi-point
statistics, and at the same time will have minimum possible error in instantaneous
dynamics. The ideal model is written as an average over the real turbulent fields
whose large scales match the current LES field. But this conditional average cannot
be computed directly. Rather, the ideal model is the target for approximation when
developing practical models, though no new practical models are presented here. To
construct such models, the conditional average can be formally approximated using
stochastic estimation. These optimal formulations are presented, and it is shown that a
relatively simple but general class of one-point estimates can be computed from two-
point correlation data, and that the estimates retain some of the statistical properties
of the ideal model.

To investigate the nature of these models, optimal formulations were applied to
forced isotropic turbulence. A variety of optimal models of increasing complexity were
computed. In all cases, it was found that the errors between the real and estimated
subgrid force were nearly as large as the subgrid force itself. It is suggested that
this may also be characteristic of the ideal model in isotropic turbulence. If this is
the case, then it explains why subgrid models produce reasonable results in actual
LES while performing poorly in a priori tests. Despite the large errors in the optimal
models, one feature of the subgrid interaction that is exactly represented is the energy
transfer to the subgrid scales by each wavenumber.

1. Introduction
1.1. The current LES formulation

Large-eddy simulation of turbulence (LES) is essentially an under-resolved turbulence
simulation that uses a model to account for the lack of small-scale resolution (see
Rogallo & Moin 1984). Such a simulation is motivated by the recognition that the
large scales of turbulence often dominate heat transfer, mixing, and other quantities
of engineering interest, while the small scales of turbulence are important in these
cases only because they affect the large scales. There has been optimism that LES can
be used as a robust predictive tool, partially because small scales of turbulence are
believed to be more isotropic and more universal than the large scales, and partially
because LES has already been successful in many flows. For reviews of LES see
Rogallo & Moin (1984) and Lesieur & Métais (1996).

The standard formulation of LES generally begins by applying a spatial filter to
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the Navier–Stokes and continuity equations:
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The filtered Navier–Stokes equations can then be written as
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where

Mi = −∂τij
∂xj

+ Ci, (1.3)

τij = ũiuj − ũiũj , (1.4)

and Ci is a term that arises when the filter does not commute with spatial differen-
tiation. Notice that Mi must be modelled because it contains terms that cannot be
written as functions of the filtered field ũ. LES research has largely been directed
towards modelling the subgrid stress τij .

The most common class of subgrid models is the eddy viscosity type. These models
are generally postulated by analogy to the stresses produced by molecular viscosity.
However, molecular viscosity models work because there is a clear separation between
molecular and continuum fluid dynamic scales, and no such separation of scales exists
for the LES problem (see Chollet & Lesieur 1981). Nevertheless, an eddy viscosity
model takes the form

τij = −2νTSij , (1.5)

Sij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
, (1.6)

where νT is the eddy viscosity and Sij is the strain rate of the resolved scales.
Smagorinsky (1963) proposed

νT = (CS∆)2|S |, (1.7)

where CS is a constant, and ∆ is a length characteristic of the filter. The constant CS
can be deduced analytically by assuming a filter cutoff in the inertial range (see Lilly
1964), or it can be determined empirically.

Eddy-viscosity models have worked relatively well for homogeneous flows, but
there are problems near walls, where subgrid-scale structures play an important role
in momentum transfer to the wall (see Panton 1997). A priori studies comparing eddy-
viscosity stresses to real subgrid stresses have found that for eddy-viscosity models,
real and predicted stresses do not correlate well (see Clark, Ferziger & Reynolds
1979; Meneveau 1994).

The concept of a wavenumber-dependent eddy viscosity emerged from the direct
interaction theory of Kraichnan (1959) and the EDQNM theory of Orszag (1970).
Further work by Kraichnan (1976) showed that a nearly constant eddy viscosity with
a sharp increase at the cutoff can be used to accurately predict the energy spectrum
in homogeneous turbulence. Further, the value of the plateau scales with the cutoff
wavenumber and energy at the cutoff, provided that the cutoff is in an inertial range.
However, a wavenumber-dependent eddy viscosity is difficult to compute in physical
space. It was found by Leslie & Quarini (1979) that with different filters the eddy
viscosity should display less dependence on wavenumber. The structure function
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model of Métais & Lesieur (1992) uses a physical space formulation and a spatially-
varying eddy viscosity. The model provides a mechanism for evaluating the energy
spectrum at the cutoff, which can then be used to compute the local eddy viscosity.

The class of dynamic models was introduced by Germano et al. (1991), and
is intended to dynamically adjust the Smagorinsky constant (or other adjustable
constant) to local features of the flow. The basic concept is to apply a second filter
of larger width ∆′ to the LES field. The second filter defines a second subgrid stress,

Tij = ũiuj − ũiũj .
Assuming that the second subgrid stress obeys a similar eddy viscosity relation, i.e.
that

Tij = 2(CS∆
′)2|S ′|S ′ij , (1.8)

one can write an over-determined but closed system of equations for the eddy viscosity
coefficient CS :

ũiũj − ũiũj = Tij − τij
= 2(CS∆

′)2|S ′|S ′ij − 2(CS∆)2|S |Sij . (1.9)

The over-determinacy can be removed by a contraction with Sij , but it is more
common to use the least-squares solution proposed by Lilly (1992).

There are some mathematical and practical problems that the dynamic method has
had to overcome. To allow an explicit solution for CS , it is generally assumed that

C2
S |S |Sij = C2

S |S |Sij , but it has been found that the coefficient CS varies strongly in
space, so that the assumption is not justified (see Lund, Ghosal & Moin 1993). The
large variance of CS also presents practical issues of stability, particularly because
large negative values of CS cause an unphysical backscatter of energy that destabilizes
the simulation. There are several ways to deal with the excessive variance of CS ,
mostly involving filters or averages over homogeneous directions or fluid path lines
(see Germano et al. 1991; Meneveau, Lund & Cabot 1996). But to some degree these
techniques all destroy the spatial locality that was intended of the dynamic model.
An alternative is the dynamic localization procedure of Ghosal et al. (1995), in which
one solves an integral equation for CS to avoid removing C2

S from the filter operator
in (1.9). In the process, one can also constrain C2

S to be positive to avoid stability
problems, or one can allow it to become locally negative to model backscatter.

The scale-similarity model of Bardina, Ferziger & Reynolds (1980) is based on a
second application of the filter, or more generally the application of a different second
filter. A new filter defines a second subgrid stress

Tij = ũiũj − ũiũj , (1.10)

that can be assumed proportional to the real subgrid stress. Unlike eddy-viscosity
models, scale-similarity models predict stresses that correlate relatively well with real
stresses (see Liu, Meneveau & Katz 1994). But real simulations have found that the
model does not properly dissipate energy, so the model is often coupled with an
eddy-viscosity model to achieve the proper dissipation. The result is called a mixed
model.

1.2. Need for a new approach

As discussed above, a broad array of LES models have been developed using a
variety of different approximations. Such models have been successful in many flows,
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yet they all have shortcomings. Several of the difficult issues that underlie current
LES practice are listed below:

(a) Filtering: In LES practice, there is commonly little attention paid to the
definition of the filter, and in many cases the filter is defined implicitly by the
numerics of the simulation. Further the only dependence of the subgrid model on
the filter is generally through the filter width; yet the interaction between subgrid
and resolved scales depends strongly on the choice of filter (Leslie & Quarini 1979;
Piomelli 1988).

(b) Numerics: As has been pointed out by Ghosal (1996), even when using high-
order numerical methods, the numerical discretization errors can far exceed the
subgrid model term. This can be circumvented by using grid resolution that is finer
than the filter width, though this is rarely done due to the expense. The alternative
is to account for numerical discretization in the formulation of the subgrid model.
Generally, current modelling techniques do not account for discretization errors,
though some dissipative numerical discretizations have been proposed as implicit
subgrid models (Boris et al. 1992).

(c) Modelling: Current subgrid models are derived under restrictive assumptions
regarding the nature of the subgrid turbulence. In particular, it is generally assumed
that the subgrid scales are locally homogeneous and isotropic and that the filter scale
is in an inertial range. However, these assumptions are violated in flow situations of
common interest such as near walls. Development of wall models that will not require
the refinement of the near-wall grid with increasing Reynolds number is considered
by many to be the most pressing challenge in LES research.

(d) Inhomogeneity: For inhomogeneous flows, it is usually necessary to introduce
inhomogeneous filters. As is well known, such filters do not in general commute with
spatial derivative operators, and this introduces new terms that in principle should be
modelled. These ‘commutation errors’ are not commonly modelled, largely because
modelling techniques have not been available for them. However, Ghosal & Moin
(1995) provide suggestions of how commutation error might be treated, and Vasilyev,
Lund & Moin (1998) show that approximately commuting filters can be defined for
one-dimensional filter inhomogeneities.

(e) Diagnostics: Efforts at LES development have been hindered by a lack of
effective diagnostic techniques. Currently available diagnostics are a priori tests in
which models are compared to actual subgrid terms computed from DNS, and a
posteriori tests in which an LES is performed and statistics are compared with
available data. The issue of interest, that is the performance of LES simulations, is
measured directly by a posteriori tests, but they provide little diagnostic information
regarding why a simulation fails or succeeds. On the other hand, a priori tests can
provide detailed diagnostics of model accuracy. But such diagnostics are generally
misleading since most models do poorly on such tests, while performing adequately
in actual simulations.

In an effort to address these issues, we introduce in this paper a new approach to
the development of large-eddy simulation, which we call optimal LES formulation. In
principle, by using this approach, one can account for all the complications discussed
above, and diagnostics are an integral part of the procedure. This work starts from
the trivial observation that the loss of information incurred during filtering places
a limit on the achievable accuracy of LES. The unique best possible LES model is
thus the one that achieves this limit, and we call it the ideal LES. The optimal LES
formulation then involves systematic approximation of the ideal LES through formal
optimization.
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In the remainder of this paper, the details of the optimal LES formulation are
presented and it is applied to LES of isotropic turbulence with Fourier cutoff filters
as an example. Of course, LES of isotropic turbulence does not suffer from most of
the difficulties cited above. The goal here is to determine how the optimal formulation
relates to well established techniques for simulation of isotropic turbulence, rather
than to develop new ‘practical’ models to address the above difficulties. Such new
practical models will require further analysis in different flows and with different
filters. Such analysis is being pursued.

The ideal LES is defined in § 2 and its statistical and dynamical accuracy are
determined. A systematic technique for approximating the ideal LES is presented in
§ 3, and this is applied to isotropic turbulence in § 4. Concluding remarks appear in
§ 5.

2. Definition of ideal LES
The most generally accepted goal of LES is to accurately reproduce large-scale

statistics. However, there is also interest in details of the large-scale flow dynamics,
though it must be recognized that such details can only be predicted for short times
due to the chaotic nature of turbulence. An example application for which this is
an issue is the flow in turbomachinery. Here, the large-scale vortices that are shed
from a stator (for example) interact with a downstream rotor, and the details of this
interaction are of interest. It will be shown in §§ 2.3–2.4 that there is a unique LES
evolution that generates accurate spatial statistics and minimizes error of the large-
scale dynamics. These two properties are so important that this unique evolution will
be called ideal LES. For an LES field w, a real turbulent field u, and a filter ∼, ideal
LES is governed by the conditional average:

dw

dt
=

〈
d̃u

dt

∣∣∣∣ũ = w

〉
. (2.1)

Note that the symbols u and w denote entire fields, which is why the time-derivatives
are not partial derivatives. When working with ideal LES, it is important to think
of entire turbulent fields as single entities. Throughout this paper, u will be used to
represent an entire field. Normal vector quantities at a particular spatial location will
be written with direct notation as u or with indicial notation as ui. The symbols w,
w, and wi denote LES quantities, while ũ, ũ, and ũi denote an application of the filter
to velocities from a particular real field.

2.1. The role of filtering

Before exploring the properties of this ideal LES, we must more carefully define the
mathematical properties of filters. One of the most important features of the large-
eddy simulation of turbulence is that only the large scales of turbulence are to be
simulated. The large scales to be simulated must be defined, and of course this is the
role of the filter. For the filter to be useful in this context, it cannot be invertible, that
is, it must discard information. More precisely, the filter is a mapping from the large-
dimensional space of Navier–Stokes solutions for the problem under consideration
(formally infinite-dimensional), to a smaller dimensional space that can be practically
represented on a computer. Unlike in a DNS (which also uses a finite-dimensional
representation), the loss of information is severe in an LES, so severe that the error
committed by ignoring the missing information cannot be tolerated. If one were to
use an invertible filter, then the dynamics of the filtered system would be identical to
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that of the unfiltered; only the dependent variables describing it would be different.
A properly resolved simulation of such a filtered system would be a DNS.

A variety of different filters have been used in performing LES simulations, but
two common filters demand discussion since their properties are subtle. They are the
implicit filter and the Gaussian filter.

It is common in LES to allow the numerical discretization to define the large scales
being simulated. Since the numerical representation is inherently computable and
finite-dimensional, it certainly defines a low-dimensional space in which the LES can
be performed. However, with such numerically defined filters, less attention has been
paid to the definition of the mapping from the Navier–Stokes space to the LES space.
When the numerical method is finite difference, the mapping is commonly described
as the top-hat filter, which when acting on some function g in one dimension is
written

g̃(x) =
1

δ+ − δ−
∫ x+δ+(x)

x−δ−(x)

g(x′) dx′. (2.2)

However, this filter is nearly invertible. It is the sampling of g̃ on a grid that actually
reduces the dimension of the representation space. The combination of the top-hat
filter (2.2) and the sampling on a grid produces a filter that is more correctly thought
of as a volume average on discrete volumes (as in a finite volume method).

Another common LES filter is a Gaussian, in one dimension:

g̃(x) =

∫ ∞
−∞

e(x−x′)′2/δ2

g(x′) dx′. (2.3)

But the Gaussian filter is also formally invertible, so in such simulations it is again
the numerical truncation (commonly a Fourier spectral method) that defines the
reduced dimensional space of the solution. This is subtle because the Gaussian filter
so strongly damps the small-scale turbulence that representing the filtered velocity
with a truncated Fourier series is extremely accurate, if all one needs to do is represent
the structure of the filtered field. However, when attempting to compute the evolution
of the filtered field as in LES, the truncation of the representation is critical because
the exact evolution of the Gaussian-filtered velocity field is determined by inverse
filtering the field, computing the right-hand side of the Navier–Stokes equations
and filtering the results. The defiltering operation amplifies the small scales to their
original magnitude, making them non-negligible. However, if the filtered field is
represented as a truncated Fourier series, the information about the small scales has
been eliminated. Of course there are other difficulties with Gaussian defiltering due
to the finite precision of computer calculations, but this is an independent issue.

In the remainder of the paper, we will therefore consider only non-invertible filters,
that is, filters that discard information. Thus, in some cases our notion of a filter
includes the numerical discretization that causes the actual loss of information. We
will also make one mild assumption regarding the filter, and that is that it is a
linear operator. The authors know of no examples of a nonlinear filter being used or
proposed for an LES.

2.2. The important LES spaces

Following the above discussion, we define the filter to be a non-invertible linear
operator F :V→W that maps elements from the space V of turbulent velocity
fields to the space W of LES fields. (Note that W need not be a subspace of V, for
example W could be a space of equivalence classes.) It will be convenient to define
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two more spaces related to F. One is the null space (or kernel) V′ of F, which is
simply the space of all elements of V that map to 0 in W. The other space we will

need is a complement toV′ inV. A complement space Ṽ is defined by the properties

that all the elements of Ṽ are linearly independent of the null space V′ and that Ṽ
and V′ together span V. Note that the choice of Ṽ is not unique, but the results of
our analysis will not depend on this choice.

Given V′ and Ṽ, there is a unique pair of projection operators PṼ + PV′ = IV
that decompose an element of V into elements of V′ and Ṽ:

u = ũ+ u′, (2.4)

ũ = PṼu, PṼ :V→ Ṽ,
u′ = PV′u. PV′ :V→V′.

The term projection is used here to describe a transformation that has the property
PP = P.

For any linear filter, once the space Ṽ is defined, the filter can be written as the

projection PṼ from V to Ṽ followed by an invertible linear transformation L from

space Ṽ to W, the range of the filter. Thus

F = LPṼ (2.5)

F :V→W, P :V→ Ṽ, L : Ṽ →W, L−1 :W→ Ṽ.
This representation of a filter will be needed in § 2.3 below.

2.3. Accurate LES statistics

In this subsection we aim to find an LES model that is guaranteed to get correct spatial
statistics, leading to results suggested by S. Pope. By spatial statistics we mean any
single-time multi-point statistical quantity of the large-scale field. To understand the
statistical properties of dynamical systems it is convenient to consider the evolution
of probability densities in phase-space. The phase-space probability density function
(p.d.f.) of a system characterizes an entire ensemble of flows. The p.d.f. specifies the
probability that any particular realization might be chosen at random, at that instant
in time. But because each realization has a deterministic evolution, the p.d.f. has a
deterministic evolution.

Let u denote an element of V, the space of turbulent velocity fields as defined
in § 2.2. Note that since V is a phase-space, u denotes an entire turbulent field. Then
ρV(u, t) is a p.d.f. denoting the probability that a field randomly chosen from the
turbulent ensemble at time t is equal to u. Let w denote an element of W, the phase
space of the LES which is also the image of V through the filter F. Then ρW(w, t) is
a p.d.f. denoting the probability that a field randomly chosen from the LES ensemble
at time t is equal to w.

Any spatial statistic can be computed by integrating the statistic over the probability
measure space, i.e.

〈G(w)〉 =

∫
W
G(w)ρW(w) dW(w). (2.6)

So to find the conditions under which an LES will produce correct spatial statistics,
one must find the conditions under which the LES p.d.f. will match the real p.d.f.

Note that in general it is impossible to require that ρV(u) = ρW(Fu), since the
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dimensions of V andW are not the same. It will thus be possible to vary u in a way
such that Fu remains constant. The problem is handled by defining a marginal p.d.f.,
which is obtained by integrating ρV(u) over the space in which Fu is constant. The
region of integration is V′ = ker(F), the kernel (nullspace) of the filter.

The marginal p.d.f. ρṼ(ũ, t) is thus defined as

ρṼ(ũ) =

∫
V′
ρV(ũ+ u′) dV′(u′). (2.7)

With this definition, the LES p.d.f. ρW(w) should be compared to ρṼ(L−1w). Thus,
for the LES to produce the correct spatial statistics, ρW(w, t) and ρṼ(L−1w, t) must
be equal for all times.

To find what will make this true, one needs evolution equations for ρW(w, t) and
ρṼ(L−1w). The turbulent system has been defined as a deterministic dynamical system
with a random ensemble of initial conditions. Suppose one defines an arbitrary region
in the phase-space of the dynamical system. The region then flows through phase-
space as each point in the region evolves according to the dynamical system, but
the probability associated with the region remains constant. If the probability density
function is differentiable, one can then express this conservation of probability as a
‘conservation law’ in phase space:

∂

∂t
ρV(u) +

∂

∂u
·
(
ρV(u)

du

dt

)
= 0, (2.8)

where ∂/∂u· is a generalized divergence in phase space. One can also regard the p.d.f. as
the expected value of a Dirac delta function, and arrive at the same evolution equation
by carefully applying the chain rule (Lundgren 1967; Pope 1985). Conservation of
probability also holds for the LES p.d.f.,

∂

∂t
ρW(w) +

∂

∂w
·
(
ρW(w)

dw

dt

)
= 0, (2.9)

but it cannot be applied to the marginal p.d.f., because phase trajectories cross when

the real turbulence system is projected into Ṽ, so there is no well-defined flow on
which to apply the conservation law. The evolution of the marginal p.d.f. ρṼ(ũ) must
be obtained by integrating (2.8) over the small scales, that is, V′, the null space of F:∫

V′
∂

∂t
ρV(u) +

∂

∂u
·
(
ρV(u)

du

dt

)
dV′(u′) = 0. (2.10)

Applying the definition of the marginal p.d.f., and decomposing the divergence,

∂

∂t
ρṼ(ũ) +

∫
V′

∂

∂ũ
·
(
ρV(u)PṼ

du

dt

)
+

∂

∂u′
·
(
ρV(u)PV′

du

dt

)
dV′(u′) = 0. (2.11)

The second term in the integrand can be eliminated by applying the divergence
theorem and requiring that the p.d.f. is zero outside a finite region:

∂

∂t
ρṼ(ũ) +

∫
V′

∂

∂ũ
·
(
ρV(u)PṼ

du

dt

)
dV′(u′) = 0. (2.12)

Exchanging the order of the divergence and integration,

∂

∂t
ρṼ(ũ) +

∂

∂ũ
·
∫
V′
ρV(u)PṼ

du

dt
dV′(u′) = 0. (2.13)
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The remaining integral can be rewritten as a conditional average:

∂

∂t
ρṼ(ũ) +

∂

∂ũ
·
(
ρṼ(ũ)

〈
PṼ

du

dt

∣∣∣∣PṼu = ũ

〉)
= 0. (2.14)

Using L to express the result in the LES space,

∂

∂t
ρṼ(L−1w) +

∂

∂w
·
(
ρṼ(L−1w)

〈
F

du

dt

∣∣∣∣Fu = w

〉)
= 0. (2.15)

Comparing (2.15) to (2.9), it is clear that if ρW(w) equals ρṼ(L−1w) at some initial
time, then ρW(w, t) equals ρṼ(L−1w, t) for all time if and only if

dw

dt
=

〈
F

du

dt

∣∣∣∣Fu = w

〉
. (2.16)

Note that this result is independent of the choice of complement space Ṽ. The
corollary, which follows from (2.6), is that all ensemble-averaged spatial statistics
will be correct if and only if (2.16) holds. To obtain correct space–time correlations,
one would need to include past time information in the condition of (2.16). We will
consider only single-time conditions here.

There are some subtleties to this result. For example, it may be possible for an
individual trajectory to be driven into a region where the density function is zero
and the conditional average is undefined. Also, in the usual application of LES, one
evolves a single field w through time. For the formal result to hold, the conditional
average must be over an ensemble in the real system whose p.d.f. matches that of
the LES. For a single LES field, the p.d.f. could be matched by a single DNS field,
and evolution by the conditional average would result in the single LES following the
single DNS.

An important question is what will happen to a single LES that is evolved according
to the conditional average over a larger ensemble. In statistically stationary turbulence,
if the LES system is ergodic, then we expect statistics gathered from the time average
of a single LES will match the LES ensemble averages, and thus statistics of the
real system. The question of whether a single LES has these properties needs further
exploration. Berkooz (1994) explored these ideas with a simulation of the filtered
Lorenz equations and concluded that there were problems recreating the statistics. But
his reduction of the Lorenz equations to two dimensions guaranteed a periodic, non-
chaotic solution that clearly could not recreate the proper statistics. The procedure
needs to be tested on a different model system, or better, on turbulence. There has
also been work with evolving an ensemble of LES systems simultaneously (see Carati,
Wray & Cabot 1996). The analysis of this subsection suggests that such ensemble
techniques may extend the ability of LES to predict spatial statistics.

2.4. Error-minimizing dynamics

One can define a mean-square error between the evolution of an LES field w(t) and
an instance of the real system u(t) as an instantaneous pointwise measurement on
∂ũi/∂t,

ei(x) =
∂wi

∂t
(x)− ∂ũi

∂t
(x). (2.17)

To see how this definition of error addresses the dynamics of LES, write the value
of the filtered field at a later time as a Taylor series expansion of the filtered field at
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the current time. Then the leading term of the expansion is ∂ũi/∂t, which suggests
that the error of (2.17) is appropriate for measuring accuracy of short-time large-scale
dynamics (see Adrian 1990).

The error defined in (2.17) is minimized in an RMS sense when the LES field w
evolves as the conditional average of the real field u:

dw

dt
=

〈
d̃u

dt

∣∣∣∣ũ = w

〉
. (2.18)

The relationship between conditional averages, stochastic estimation, and RMS error
is outlined in Papoulis (1965) and will not be repeated here.

As discussed above, the most fundamental property of LES is that state information
about the turbulent field is lost, so it is reasonable to expect that the lost information
limits the accuracy of LES in some way. It was shown in § 2.3 that accurate large-scale
statistics can still be obtained. The loss that occurs is in the small-scale statistics that
cannot be computed. In the case of dynamical error, the results are not so promising.
Although ideal LES may minimize the error, there is nothing to guarantee that the
error will be small. This error is fundamental to the LES representation.

Note that the ideal LES may be interpreted as the deterministic component of the
evolution of the large scales. Then the mean-square error in the time derivative, which
is minimized by the ideal LES, measures the magnitude of the stochastic component
of the small-scale contribution to large-scale dynamics.

Measuring error of the large-scale dynamics also provides an a priori framework
with which to measure the performance of any subgrid model. Even though the
limiting error of the ideal model may be impractical to compute, the a priori errors
of practical models may still be computed so that models may be compared to each
other.

2.5. An ideal model term

It is customary to write the LES equations as the Navier–Stokes terms operating
on the filtered field, plus a subgrid force, as in (1.2). This has been done with
the expectation that Navier–Stokes terms capture a significant fraction of the LES
behaviour. It has already been shown that ideal LES evolves as the conditional
average of ∂ũi/∂t. However, it is useful to continue the practice of decomposing the
equations into Navier–Stokes and model terms, so that an ideal subgrid model may
be defined.

The discussion of § 2.2, in which the evolution space for the LES is defined,
illuminates a subtlety to using Navier–Stokes terms in the LES equations. In particular,
it is clear that the LES evolution equations must be a mapping from W to W, i.e.
mappings within the LES solution space. For non-invertible filters, it is likely that
Navier–Stokes terms cannot be exactly represented as such mappings. For example,
if the LES solution space is a piecewise-linear continuous function space, then terms
with spatial derivatives are not in the space. If the LES solution space is a spherically
truncated Fourier space, then quadratic products are not represented in the space.
In general, the best one can do is to approximate the Navier–Stokes operator by a
mapping within the LES solution space. This observation is almost trivial, except that
the approximation is not unique. Details of the terms will depend on the choice of
filter, on the choice of numerical method, and on the choice of mapping back intoW.
This implies that the subgrid force is not unique, and that the model should depend
on everything just mentioned.

Note that this problem does not occur in direct simulations because there are no
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important subspaces that arise from the filter. In DNS, one has the possibility of
converging to a solution through grid refinement. With large-eddy simulation, the
filter defines an LES solution space that is in general not closed under the Navier–
Stokes operator. Even explicit filtering and grid refinement cannot circumvent the
issue.

Thus, we write the LES evolution equations as

∂w

∂t
= NS(w) +m(w), (2.19)

where NS and m are both mappings from the LES function space to itself, and
NS is some non-unique approximation to the Navier–Stokes time-derivative. Note
that depending on how NS is formulated, it may or may not be Galilean invariant.
However, provided only that the filter operator is Galilean invariant, m as defined
below will be such that the right-hand side of (2.19) will be Galilean invariant.

The remainder of this paper will refer to estimation of M (u), not ∂ũ/∂t, and LES
subgrid models m(w) are regarded as approximations to the ideal subgrid model

m(w) = 〈M(u)|ũ = w〉, (2.20)

where the real subgrid force M (u) must be consistent with the LES equations (2.19),
i.e.

M (u) =
∂̃u

∂t
−NS(ũ). (2.21)

The dynamical error defined in § 2.4 can be written as

e(x) = M (x)−m(x). (2.22)

3. Optimal formulations
The ideal LES defined above has all the features one could wish for in an LES

model, but unfortunately it cannot be computed directly. The statistical information
embodied in the conditional average of ideal LES is so tremendous that it is unlikely
that the ideal model for a given flow or filter could ever be found exactly. Still, one
may use approximation techniques to investigate the nature of the ideal model. The
term optimal LES will be used to describe formulations that most closely approximate
ideal LES within some class. By systematically developing approximations to the ideal
model, one may determine bounds on the minimum error, which is associated with
the stochastic nature of the subgrid force. Also, one can regard the task of subgrid
modelling as a problem of approximating the conditional average that defines the
ideal model.

One strategy for constructing such approximations is to use a stochastic estimate
of the LES time derivative or the LES model term, as suggested Adrian (1990).
Given a functional form for the estimate, the stochastic estimate minimizes the mean-
square error between the quantity being estimated (the subgrid force in this case)
and the estimate. Stochastic estimation is a well-established method of approximating
conditional averages (see Adrian 1977; Adrian & Moin 1988; Adrian et al. 1989),
and the technique has already been applied to optimal subgrid models by Berkooz
(1994), who tested the the procedure on the Lorenz equations.

As discussed in § 2.5, the real subgrid force Mi(x) is the term to be estimated. The
approximation is based on the convolution of an estimation kernel Kij with velocity



332 J. A. Langford and R. D. Moser

event data at N points:

mi(x) =

∫
Kij(x, ξ1, . . . , ξN)Ej(w; ξ1, . . . , ξN) dξ1 . . .dξN, (3.1)

where Ej is an event vector that contains (possibly nonlinear) functions of w at N
different points. Note that one can choose

~E (ξ1, ξ2, . . .) = (1, wi(ξ1), wj(ξ1)wk(ξ2), . . .) (3.2)

to recover the expansion

mi(x) = Ai(x) +

∫
Bij(x, ξ1)wj(ξ1) dξ1

+

∫
Cijk(x, ξ1, ξ2)wj(ξ1)wk(ξ2) dξ1dξ2 + · · · , (3.3)

which is complete in the sense that any functional mi(x, w) has such a representation,
although the expansion may be infinite. One can also choose event data that include
higher-order terms at a single point, such as

~E (ξ1) = (1, wi(ξ1), wj(ξ1)wk(ξ1), . . .), (3.4)

to form a higher-order expansion using single-point event data. Such an expansion
is not complete, but one may still improve the accuracy of an N-point estimate by
including higher-order terms. This framework enables one to speak of linear one-point
estimates, quadratic one-point estimates, quadratic two-point estimates, etc.

By the statistical orthogonality principle (see Papoulis 1965), the RMS error between
Mi and the estimate mi is minimized when the event data are uncorrelated with the
error ei = Mi − mi:

〈(Mi(x)− mi(x))Ek(η1, . . . , ηN)〉 = 0. (3.5)

Substituting (3.1), the optimal kernel is governed by

〈Mi(x)Ek(η1, . . . , ηN)〉
=

∫
Kij(x, ξ1, . . . , ξN)〈Ej(ξ1, . . . , ξN)Ek(η1, . . . , ηN)〉 dξ1 · · · dξN. (3.6)

Note that in minimizing the mean-square error between the true subgrid force Mi and
its estimate mi, one also minimizes the mean-square difference between 〈Mi|ũ = w〉
and mi. This allows us to interpret the estimate as an approximation of the conditional
average.

To solve for the kernel Kij of the optimal N-point estimate, one must know the
(N + 1)-point correlation of the real subgrid term Mi and the event data, and one
must know the (2N)-point correlation of the event data with itself. The solution will
be unique provided the event data are linearly independent. Further, a unique solution
must correspond to a minimum error, not a maximum, because the domain from
which Kij is chosen is unbounded while the error associated with Kij has a lower
bound of zero.

The mean quadratic error of the optimal N-point estimate is

〈ei(x)ej(x
′)〉 = 〈Mi(x)Mj(x

′)〉
−
∫
Kjk(x

′, ξ1, . . . , ξN)〈Mi(x)Ek(ξ1, . . . , ξN)〉 dξ1 . . . dξN. (3.7)
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Computing the error of the optimal estimate thus requires an additional two-point
correlation of the real subgrid term with itself.

The subgrid models based on these optimal N-point estimates have remarkable a
priori properties. One can show that the correlation of the model term mi with any
event data is the same as the correlation of the exact subgrid term Mi with the event
data:

〈mi(x)Ej(ξ1, . . . , ξN)〉 = 〈Mi(x)Ej(ξ1, . . . , ξN)〉. (3.8)

Since the only contribution of the small scales to ∂ũi/∂t is contained in the subgrid
term mi, an optimal subgrid model also has the a priori property that the correlation
of ∂ũi/∂t with the event data is predicted exactly. The event data of a linear one-point
estimate includes ũi, so that the subgrid model will accurately predict all kinetic energy
transfer in an a priori test. The emphasis is that this is an a priori result because the
ensemble averages of (3.8) are averages over the real system. For a discussion of a
priori testing, see Meneveau (1994).

Another interesting property of these estimates is that they preserve Galilean
invariance. If NS in (2.19) is Galilean invariant, then an estimate that includes a
linear dependence on ũi is sufficient to assure invariance of mi. If on the other
hand NS is not invariant, then a one-point quadratic estimate is sufficient to assure
invariance of the LES equations.

4. Application to isotropic turbulence
We applied the quadratic one-point estimation to the case of isotropic turbulence

with spherical Fourier truncation filters, using DNS data. The DNS data are from
a well-resolved 2563 simulation of forced isotropic turbulence. Except when noted
otherwise, numerical results are quoted using the arbitrary normalization of the DNS.
In these units, the minimum and maximum resolved wavenumbers have magnitude
k = 1 and k = 121, and the viscosity is ν = 1/150. Forcing was achieved with a
negative viscosity on modes with wavenumber magnitude k 6 3. The simulation was
pseudo-spectral: nonlinear terms were dealiased with a combination of masks and
random phase shifts. Nonlinear terms were integrated with a second-order Runga–
Kutta scheme, and viscous terms were advanced with an integrating factor. For
further details see Rogallo (1981). In our arbitrary units, the resulting statistics of
the simulation are kinetic energy q2/2 = 41.1, dissipation ε = 62.9, Taylor microscale
λg = 0.209, and Reynolds number Rλ = 164. The three-dimensional energy spectrum
is shown in figure 1.

The subgrid term to be estimated is written

Mi(x) = P
(
∂

∂xj
τij(x)

)
, (4.1)

where P denotes the divergence-free projection into the band-limited Fourier space.
Need for the projection arises from the nonlinear filtered product in τij , which would
otherwise cause M to be outside the LES space (see § 2.5). The Fourier coefficient of
M is

M̂i(k) = ikj τ̂ij(k)− i
kikjkl

k2
τ̂jl(k). (4.2)

The subgrid term (4.1) was approximated with a linear one-point estimate, a quadratic
one-point estimate, and a composite estimate of up to 46 terms, including up to cubics.
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The event data for the linear and quadratic estimates are

~E (w, ξ1) =

 w1(ξ1)

w2(ξ1)

w3(ξ1)

 and ~E (w, ξ1) =



w1(ξ1)

w2(ξ1)

w3(ξ1)

w1(ξ1)w1(ξ1)

w1(ξ1)w2(ξ1)

w1(ξ1)w3(ξ1)

w2(ξ1)w2(ξ1)

w2(ξ1)w3(ξ1)

w3(ξ1)w3(ξ1)


, (4.3)

respectively, and the 46-term model is described in § 4.4. Note that the quadratic
one-point estimate has a form general enough to subsume the incompressible Navier–
Stokes equations. This estimation was done for three sharp Fourier cutoff filters with
cutoff wavenumbers kc = 64, kc = 32, and kc = 16, which are marked on the energy
spectrum in figure 1.

While the DNS used to gather the estimation data is a model for isotropic tur-
bulence, it is not exactly isotropic. In particular, it is computed in a cubical domain
with periodic boundary conditions. Therefore, the estimates were performed in two
ways, first by assuming the DNS data are not isotropic and then by assuming they
are isotropic. By admitting any anisotropies that may have arisen from the periodic
representation of the simulation, we were able to ensure that details of the estimation
were not consequences of an isotropic assumption. Analysis of the two estimates and
their associated errors led us to conclude that the assumption of strict isotropy was,
in fact, a good one to make. In this paper only the isotropic results are presented,
although details of both estimation procedures are provided.
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4.1. Data requirements

To compute the optimal linear one-point estimate and its associated error, the fol-
lowing statistical quantities were needed:

〈ũi(ξ1)ũj(ξ1 + x)〉, 〈τij(ξ1)ũk(ξ1 + x)〉, 〈τij(ξ1)τkl(ξ1 + x)〉.
These are the correlations of the event data with itself, of the event data with the
subgrid stress, and of the subgrid stress with itself. The optimal quadratic one-point
estimate required the following additional correlations:

〈ũi(ξ1)ũj(ξ1)ũk(ξ1 + x)〉, 〈ũi(ξ1)ũj(ξ1)ũk(ξ1 + x)ũl(ξ1 + x)〉,
〈ũi(ξ1)ũj(ξ1)τkl(ξ1 + x)〉.

In general, correlations of the event vectors with the model term Mi (or equivalently
τij), and with themselves are required. A set of these correlations was required for
each filter.

These statistics were gathered from 15 DNS fields, each separated in time by
approximately one-half of an eddy-turnover time, where the eddy-turnover timescale
is defined as ε/q2. To increase the statistical sample base, there was an average over
directions of spatial homogeneity. There was also an average over the 48 reflections
and 90◦ rotations of each field, all of which were assumed to occur with equal
probability. The statistics were not gathered with a full set of isotropic symmetries
so that anisotropic estimates could be computed. However, statistics for the isotropic
estimates were computed using standard shell-averaging techniques.

Convergence of the statistics was checked by comparing quantities averaged over
7 and 14 fields. The most sensitive check for convergence was to compare individual
Fourier modes of the correlation tensors, a test that is relevant for the anisotropic
estimate. By this method, several of the correlation tensors appeared not to have
converged. For example, the third-order correlation of filtered velocity with subgrid
stress had not converged at each Fourier mode. A less sensitive test for convergence
was to make comparisons of quantities that had been fit to an isotropic form through
a shell-averaging procedure. In this sense the isotropic estimates were well-converged,
and the anisotropic estimates appeared to be converging to the isotropic ones.

4.2. Exact properties of the subgrid scales

Next, several exact features of the subgrid term Mi are presented. The spectra of Mi

and ∂ũi/∂t are shown in figure 2. The spectra of the subgrid terms are characterized
by a quadratic growth with k followed by a sharp increase near the cutoff. It is evident
that the subgrid term is only significant near the cutoff.

Because Mi is a term contributing directly to ∂ũi/∂t, the correlation
〈
ũi(ξ)Mi(ξ + x)

〉
represents the average contribution of Mi to the evolution of large-scale kinetic
energy. This correlation integrated in wavespace over wavenumbers from magnitude
0 to magnitude k is shown in figure 3. This represents the average transfer of kinetic
energy from modes with wavenumber magnitude less than k to the subgrid. The
Fourier transform of the correlation, normalized by the magnitudes of Mi and ũi is
shown in figure 4. This shows the average alignment of M and ũ, which indicates the
direction of energy exchange between a particular resolved scale and the combined
subgrid scales. It is clear from these figures that there is a small net backscatter of
energy to low wavenumbers with the two narrowest filters, but no backscatter of
energy with the coarsest filter. Recall from the previous section that these quantities
will be a priori predicted exactly with the optimal estimates described in this section.
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Figure 3. Average transfer of energy
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0
〈 ˆ̃ui(k′)M̂∗

i (k
′)〉 dk′ from the largest scales to the subgrid for

cutoff filters at widths kc = 16 ( ), kc = 32 ( ), and kc = 64 ( ).

4.3. Homogeneous one-point estimation

For a one-point estimate in a homogeneous system, the estimation is local in Fourier
space, i.e.

m̂i(k) = K̂ij(k)Ê j(k). (4.4)

The optimal kernel K̂ij can be determined from

〈M̂i(k)Ê ∗j (k)〉 = K̂il(k)〈Ê l(k)Ê ∗j (k)〉. (4.5)

This is a simple linear system. For the linear estimate the matrices are all 3× 3, and
for the quadratic estimate the matrices are 3 × 9 and 9 × 9. Because ŵ1, ŵ2, and ŵ3

are linearly related through continuity, the correlation of the event data with itself
is a singular matrix and the optimal kernel K̂ij is not unique, although the estimate
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∗
i 〉1/2/〈 ˆ̃uiû∗i 〉1/2 of the filtered velocity with the

real subgrid term for cutoff filters at widths kc = 16 ( ), kc = 32 ( ), and kc = 64 ( ).

Note that the value ρ = 1 corresponds to a complete alignment between M̂i and ˆ̃ui.

(4.5) and the error (4.6) are. The error between the one-point optimal estimate and
the real subgrid term is

〈êi(k)ê∗j (k)〉 = 〈M̂i(k)M̂∗
j (k)〉 − K̂il(k)〈M̂∗

j (k)Ê l(k)〉. (4.6)

4.4. Isotropic estimation equations

For isotropic turbulence, the homogeneous one-point estimate simplifies considerably.
The most general one-point estimate can be expressed as

m̂i(k) = C1(k)Ê1
i (k) + C2(k)Ê2

i (k) + · · ·+ CN(k)ÊN
i (k), (4.7)

where the event vectors E j must be in the space W in which the LES is performed.
Thus, when a Fourier cutoff filter is used, the event vectors E j are divergence-free
and band-limited. The scalar coefficients Cj are simple functions of k, and for each k
they are governed by the linear system

〈
Ê1∗
i Ê

1
i

〉 〈
Ê1∗
i Ê

2
i

〉 · · · 〈
Ê1∗
i Ê

N
i

〉〈
Ê2∗
i Ê

1
i

〉 〈
Ê2∗
i Ê

2
i

〉 · · · 〈
Ê2∗
i Ê

N
i

〉
...

...
. . .

...〈
ÊN∗
i Ê

1
i

〉 〈
ÊN∗
i Ê

2
i

〉 · · · 〈ÊN∗
i Ê

N
i

〉




C1

C2

...

CN

 =


〈
Ê1∗
i M̂i

〉〈
Ê2∗
i M̂i

〉
...〈

ÊN∗
i M̂i

〉
 . (4.8)

Furthermore, the error is given by

〈ê∗i (k)êi(k)〉 = 〈M̂∗
i (k)M̂i(k)〉 −

N∑
j=1

Cj〈Êj∗
i (k)M̂i(k)〉. (4.9)

For the linear estimate, one uses Ê1
i = ŵi, and for the quadratic estimate, one also

includes Ê2
i = P(ikjŵiwj), where P is a solenoidal projection into the LES space.

Note that the homogeneous anisotropic estimates outlined in § 4.3 appear to converge
to the isotropic estimates shown above. Consequently, all results in this paper will be
shown only for the isotropic estimates.
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Event vectors Event scalars
wi 1

P(∂/∂xj)(w
16
i w

16
j ) (SijSij)

1/2

P(∂/∂xj)(w
14
i w

14
j ) SijSij

P(∂/∂xj)(w
12
i w

12
j ) (wiwi)

1/2

P(∂/∂xj)(w
10
i w

10
j ) wiwi

P(∂/∂xj)(w
8
i w

8
j ) (wiwi)

2

P(∂/∂xj)(wiP(∂/∂xk)wjwk)

P(∂/∂xj)(wiP(∂/∂xj)wiwk)

Table 1. Table of vectors and scalars used to construct estimation events. An estimation event is
formed by multiplying a vector by a scalar. Here, wN denotes the turbulent velocity field that has
been filtered with a cutoff kc = N, and Sij is the filtered strain-rate magnitude defined in (1.5).

Most of the results in this paper will be provided only for the linear and quadratic
estimates. However, more complicated estimates were also explored for the case of
kc = 16. The most comprehensive estimate was a model with 46 terms, which were
generated by taking a basic set of 8 event vectors, scaling each event vector by one of 6
scalar fields (including the constant 1), and removing terms that were not independent,
as determined by the fact that their inclusion made the correlation matrix in (4.8)
singular.

The event vectors and scaling vectors are listed in table 1. Included are quadratic
terms computed from velocities that have been filtered with various Fourier cutoffs
including kc = 16, the LES cutoff under consideration, and coarser filters with cutoffs
as small as kc = 8. These coarse-filtered quadratic terms are included because they
subsume the generalized scale-similarity model as proposed by Liu et al. (1994). Also,
by using several filter widths, we include some of the information in the general
two-point quadratic estimate (3.3). Also included are two cubic terms that generalize
the cubic term suggested by the RNG analysis of Zhou & Vahala (1993). Of the
scalars, the most notable is the magnitude of the strain-rate tensor, which is included
to allow the Smagorinsky model to be subsumed. Of the 48 terms that can be formed
from a product of one of the vector events and one of the scalars, two were found to
be statistically dependent on the other 46. They were the two cubic terms scaled by
(wiwi)

2.

4.5. Properties of the optimal estimates

The optimal linear isotropic estimate can be written as a k-dependent eddy viscosity:

m̂i(k) = −k2ν̂T (k)ŵj(k), (4.10)

where

ν̂T (k) =
−〈 ˆ̃u∗i (k)M̂i(k)〉
k2〈 ˆ̃u∗j (k) ˆ̃uj(k)〉 . (4.11)

The optimal eddy viscosity for the three cutoffs is normalized by [E(kc)/kc]
1/2 and

shown in figure 5.
The optimal eddy viscosities all turn up sharply near the cutoff as predicted by

Kraichnan (1976) and observed by Domaradzki et al. (1987) and Lesieur & Rogallo
(1989). Also note that the eddy viscosities are nearly zero, and in fact go negative far
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Figure 5. Optimal eddy viscosities ν̂T normalized by [E(kc)/kc]
1/2 for cutoff filters at widths

kc = 16 ( ), kc = 32 ( ), and kc = 64 ( ).

from the cutoff for the two highest wavenumber cutoffs. These cases are consistent
with the results of Domaradzki et al. (1987), who also obtained slightly negative
plateau values when the cutoffs were in a dissipative range. It has been suggested by
Lesieur (1998) that when the cutoff is located where the spectrum has a significantly
steeper slope than the k−5/3 of the Kolmogorov inertial range, then the plateau level
of the eddy viscosity should go to zero (see figure 1). The kc = 16 case has behaviour
that is more representative of a high Reynolds number LES with the cutoff in the
inertial range. Results of EDQNM suggest that for cutoff in the inertial range, the
eddy viscosity has a plateau value of 0.267 (see Chollet & Lesieur 1981), which is
the basis of the structure function model (Métais & Lesieur 1992). A plateau value
of 0.09 was observed by Lesieur & Rogallo (1989), and in our case of kc = 16 the
plateau value is approximately 0.13, which is consistent with the other results.

The optimal quadratic isotropic estimate includes one additional term, and can
be written so that the k-dependent coefficients multiply terms of order one. The

normalization is achieved by multiplying Cj(k) by −〈Êj
i (k)Êj∗

i (k)
〉1/2

(see § 4.4). These
coefficients are shown in figure 6. The quadratic coefficients are characterized by a
plateau that is nearly zero, with the level tending to zero as kc increases into the
dissipative range (see figure 1). For the kc = 16 case, which is most representative of a
high Reynolds number LES, the quadratic coefficient is at least a factor of 6 smaller
than the linear term in the plateau region. The quadratic coefficients increase sharply
near the cutoff, but are still 2 or 3 times smaller than the linear ones, suggesting that
the linear coefficient is most significant.

Another measure of the significance of the quadratic and other higher-order es-
timates is the mean-square difference between the linear and higher-order estimates,
which is shown in figure 7. It has been normalized by the magnitude of the linear
estimate at the cutoff, which is where model performance is most important (see
figure 8). The difference between the estimates is insignificant, except near the cutoff,
and there the mean-square difference is at most 15% of the linear estimate for the
quadratic, but is as much as 70% of the linear estimate for the 46-term estimate.
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Figure 6. Optimal estimation coefficients for three cutoff filters, normalized to multiply quantities
of order one. Shown are the linear coefficient from the linear estimate ( ), the linear coefficient
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Figure 7. Spectral density of the difference di between the optimal linear and quadratic estimates,
normalized by the mean-square value of the linear estimate at the cutoff. Sharp Fourier cutoffs are
located at kc = 16 ( ), kc = 32 ( ), and kc = 64 ( ). Also shown is the difference
between the linear and 46-term estimate at kc = 16 ( ).

4.6. Error of the optimal estimates

Mean-square error between the real and estimated subgrid force is shown in figure 8.
Note that the error has been normalized by the spectrum of the real subgrid force
Mi. This normalization is used to clearly show how well a particular model can
represent the real subgrid term. It would also be sensible to normalize errors by the
magnitude of ∂ũi/∂t, which would show the expected impact of the errors on the
large-scale dynamics. But throughout much of the spectrum, the subgrid term is much
smaller than ∂ũi/∂t, which would make it difficult to differentiate between the errors
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Figure 8. Spectral densities of the estimation errors for the linear ( ), quadratic ( ), and
46-term ( ) estimates of the subgrid term at three different sharp cutoff widths, normalized by
the spectral density of the real subgrid term.

of different models. The error is thus normalized by the spectrum of the real subgrid
term and the reader is referred to figure 2 to understand its contribution to ∂ũi/∂t.

The most striking feature of the error is that it is large. This means that each of
the optimal estimates that we computed is only able to represent a small fraction of
the true subgrid force. Although the error is uniformly large, the magnitude of the
subgrid term is much smaller than the magnitude of ∂ũi/∂t at low wavenumbers (see
figure 2), so that the impact of the error on the accuracy of the LES dynamics is
most important near the filter cutoff.

Recall from § 2.4 that the limiting error associated with the ideal model is a
measure of the stochastic nature of the subgrid, and quantifies the fundamental limits
on accuracy that are inherent to LES modelling. Obviously one would like to know
the magnitude of this limiting error. Such knowledge, for example, would allow one to
sensibly assess whether a particular model can be improved. Unfortunately it may be
impossible to directly compute the fundamental error of the ideal model, which leaves
only the possibility of deducing its magnitude from the errors of optimal estimates.
It is known that the mean-square errors of the optimal estimates (shown in figure 8)
are equal to the fundamental error of the ideal model, plus the error committed in
approximating the conditional average, which again is not known. The error of an
optimal estimate also provides an upper bound on the fundamental error. As the
accuracy of the stochastic estimates is improved (e.g. by including more terms), this
bound will be refined, and the error we are measuring will approach the fundamental
error of the ideal model.

It has been previously established that stochastic estimates can closely approximate
conditional averages of turbulent quantities in isotropic turbulence (see Adrian et al.
1989). Further, the error of the linear model is only slightly higher than the error
of the quadratic model. In the case of filter cutoff kc = 16, a variety of higher-order
models formed from the event vectors and scalars listed in table 1 were used. The
error from the best of these, which is the 46-term model discussed in table 1 is also
plotted in figure 8. This 46-term model yields a few percent smaller error than the
linear model, but there are no terms that contribute particularly strongly to this
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improvement. Each nonlinear term on its own yields error improvements on the order
of that provided by the quadratic model. Thus it is the accumulated contribution of
all 46 terms that yields the reduced error.

These observations lead us to hypothesize that in isotropic turbulence with Fourier
cutoff filters, the estimation errors of the ideal model are nearly as large as the errors
shown in figure 8. The implication is that the subgrid force is mostly stochastic,
and further, that the linear model possesses the dominant characteristics of the ideal
model. Of course the validity of this hypothesis depends on how well our estimates
approximate the conditional average, and we cannot preclude the possibility that
a broader class of multi-point estimation terms would have a smaller error and
establish a different bound on the error of the ideal model. What is clear is that
model terms of the form used in many practical subgrid models (e.g. Smagorinsky,
scale similarity, RNG-based, dynamic Smagorinsky and structure function) do not
significantly improve on the simple linear model.

There are several other interesting features of the error shown in figure 8. The error
appears to decrease near the cutoff, except for the case of cutoff kc = 16, where it
is uniformly smaller. The error also appears to decrease at the lowest wavenumbers,
except for the case of cutoff kc = 32. To explain these features, recall that the optimal
one-point estimates can exactly represent average energy transfer between the resolved
scales and the subgrid scales (the average energy transfer appears in the left-hand
side of (4.5)). This suggests that scales exchanging energy with the subgrid will have
smaller error than scales not exchanging energy with the subgrid. Indeed, figure 4
shows that there is a point of no average alignment (no average energy exchange)
between wavenumbers k = 2 and k = 3 for cutoff kc = 32, and a point of no average
alignment between wavenumbers k = 30 and k = 40 for cutoff kc = 64. These points
correspond to peaks in the error shown in figure 8. This suggests that the error
should be normalized by the part of the subgrid that is statistically orthogonal to the
velocity, a quantity that is exactly the error of the linear estimate.

The quantity 〈
êi(k)ê∗i (k)

〉〈
M̂i(k)M̂∗

i (k)
〉− 〈M̂i(k) ˆ̃u∗i (k)

〉2
/
〈

ˆ̃uj(k) ˆ̃u∗j (k)
〉 (4.12)

is shown in figure 9 for the optimal quadratic and 46-term estimate. It is the estimation

error normalized by the part of M̂ that is statistically orthogonal to ˆ̃u. It is also the
ratio of the higher-order to linear errors of figure 8. Note that the low-wavenumber
data shown in figure 9 are characterized by some statistical noise, although the data
from just before the peak through the cutoffs are well-converged. For the linear
estimate the quantity is identically 1, and for the quadratic estimate it is nearly
1. The renormalized error of the 46-term model ranges from 94% to 97% in the
high-wavenumber range where the subgrid term is of any importance. This again
suggests how difficult it is to significantly improve on the linear, purely dissipative
linear model.

It has already been shown that the optimal estimates can correctly model average
energy exchanges. We have also hypothesized that the errors in the higher-order
estimates are representative of those for the conditional average. If this is so, then
this new normalization of the error suggests that, except for the energy exchange, the
dynamics of the subgrid term are mostly stochastic, that is, the subgrid term may
be essentially a random fluctuation about a mean energy exchange. If so, the best
subgrid model may be able to do little more than estimate average dissipation. Note
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Figure 9. Ratio of the quadratic estimation error to the linear estimation error (spectral density)
for the isotropic estimates of the subgrid term at sharp Fourier cutoffs of width kc = 16 ( ),
kc = 32 ( ), and kc = 64 ( ), and of the 46-term estimation error to the linear estimation
error at kc = 16 ( ). Interpreted also as error normalized by the part of the subgrid that is
statistically orthogonal to velocity (see discussion).

that the discussion of this section is limited to isotropic turbulence and sharp cutoff
filters; it is expected that the role of the model is more significant in complex flows.

5. Conclusions
We have shown that there is an LES model that can be written as the conditional

average (2.1) and is in all senses ideal. The ideal model yields accurate spatial
statistics and minimizes error of the short-time large-scale dynamics. Unfortunately,
the conditional average is not directly computable. But this result establishes a well-
defined target for practical models, and suggests that formal approximation of the
conditional average is a good strategy for developing subgrid models. Furthermore, it
was demonstrated that minimizing dynamical error is necessary for accurate statistics,
but that the minimum possible dynamical error is not expected to be zero. An obvious
consequence is that in performing an LES one must tolerate a level of dynamical
error.

Measuring error of the large-scale dynamics also provides an a priori framework in
which to assess the performance of any proposed subgrid model. Because the limiting
error of the ideal model is not known, one does not know how closely a practical
model approximates the ideal model. However, the errors of practical models can still
be compared to each other to determine which are closest to the ideal. This can be
meaningful even when the error is large, since the intrinsic error of the ideal model
may itself be large.

Stochastic estimation can be used to develop classes of optimal subgrid models
that formally approximate the ideal model by minimizing error in the large-scale
dynamics. Expressions are derived for a general class of estimates of the conditional
average and it is shown that the simplest (one-point) estimates are able to identically
represent the average energy exchanges between the resolved and subgrid scales at
each wavenumber, as well as a variety of other one-point statistics.

The formulation was applied to a forced isotropic turbulence, with the large scales
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defined using a Fourier cutoff filter. For each model tested, it was found that the
mean-square error between the real and estimated subgrid force was large. It is
hypothesized that the error of the ideal model is also large; if so, then the subgrid
term is mostly stochastic. This would be consistent with previous experience with
stochastic estimation of conditional averages in isotropic turbulence (Adrian et al.
1989), in which the error in estimating the conditional average was small, while the
stochastic component was large. However, without knowing the error committed in
approximating the conditional average, this hypothesis cannot be proved directly.
There appears to be no good way to evaluate the proposition that the errors of our
optimal estimates are comparable to those of the ideal model, except to continue
identifying and testing potential dependences. It is important that such modelling
activities continue.

These observations have important implications. It has been observed since Clark
et al. (1979) that LES models do not provide a good instantaneous representation of
the subgrid terms, and yet these models appear to work well in actual simulations.
The current results suggest that this is inherent to LES modelling; that it is neither
necessary nor possible for a deterministic subgrid model to accurately represent the
real subgrid terms. Rather, the subgrid model needs to represent the conditional
average defined in (2.20).

Even if the exact subgrid term is mostly stochastic, the local dynamics of the largest
scales may still be predicted for short times because the subgrid contribution to ∂ũi/∂t
is small. Furthermore, as discussed in § 2.3, there is also reason to believe that even
with a mostly stochastic subgrid term, the turbulent statistics can still be computed
correctly; indeed it has been seen that the simplest one-point estimates are capable
of recovering the average dissipation of the real system.

If it is indeed the case that the estimates and errors presented in § 4.6 are represen-
tative of the conditional average, then, for isotropic turbulence with Fourier cutoff
filters, the best subgrid model may be able to do little more than account for the
average dissipative effect of the subgrid on each large-scale mode. In any case, it is
clear that among the many estimation terms evaluated in § 4, the only identifiable
subgrid effect is the dissipative energy transfer represented by the linear estimate. The
modest, but discernible improvement of the 46-term estimate over the linear estimate
is the cumulative effect of all 46 terms; we were unable to attribute it to any single
term or small group of terms.

The dominance of dissipative energy transfer in the deterministic part of the model
term Mi (to the extent we can determine it) is clearly specific to isotropic turbulence.
In a strongly inhomogeneous flow (e.g. near a wall) a similar analysis is not expected
to yield this result. However, the apparent dominance of the dissipation is likely to
apply when anisotropy or inhomogeneity are not too strong, provided the filter is
sufficiently narrow so that subgrid turbulence is isotropic. This is probably the reason
that simple eddy-viscosity models such as Smagorinsky and its dynamic variant
have been relatively successful. It is also consistent with the observation by Baggett,
Jiménez & Kravchenko (1997) that for the dynamic Smagorinsky model to work well
in the core region of a channel flow, the subgrid contribution to the mean Reynolds
stress must be negligible. This is a necessary condition for the subgrid turbulence to
be isotropic.

Finally, several details of the current results are also specific to the Fourier cutoff
filter used here. In particular, the fact that the model term Mi is so small compared to
∂ũi/∂t (see figure 1), and the apparent dominance of the dissipation in the deterministic
part of Mi is a testament to how well the Navier–Stokes terms in the LES formulation
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(1.2) represent the deterministic part of ∂ũi/∂t. This property almost certainly depends
on the filter, so with other filters we should expect the Navier–Stokes terms to
represent less of the deterministic ∂ũi/∂t, leaving more for the optimal LES model
term to represent. This is consistent with observations by Piomelli (1988) and Liu et
al. (1994) that the scale-similarity model yields significant improvements in subgrid
model error over Smagorinsky for a Gaussian filter, but not for a Fourier cutoff filter.

Clearly, the optimal LES analysis discussed in this paper needs to be applied to
other filters and to inhomogeneous flows so that the necessary characteristics of
subgrid models for these cases can be determined. Such analyses are being pursued.
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